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ABSTRACT 

An elementary proof of Zelevinsky's classification for representations of GL(n) 
with an Iwahori-fixed vector is given using the theory of Hecke algebras. 

Let G be the group of F-rational points of a connected, reductive, algebraic 

group over a p-adic field and let I be an Iwahori subgroup of G. The Hecke 

algebra ~ of compactly supported functions on G which are right and left 

invariant under I is a finitely-generated algebra which can be given explicitly in 

terms of generators and relations. It is also known that there is an equivalence 
between the category of admissible representations of G which are generated by 

their spaces of/-f ixed vectors and the category of finite-dimensional Yg-modules 
(this is a theorem of Bernstein, Borel, and Matsumoto). Therefore a special class 

of representations of G can be approached through the study of the explicity 

given algebra ~. 
In this paper we give a proof of the classification theorems for irreducible 

~-modules for the case G -- GL. (F) using the methods developed in [4]. The 

results proved here are special cases of results of A. Zelevinsky ([5]) on 

representations of GL, (F). However, Zelevinsky's proofs make essential use of 

the group GL, (F), whereas the methods used here refer only to the algebra Yg. 

Thus, the parameter q which enters into the defining relations of ~ is 

constrained to be a power of a prime in Zelevinsky's work, while the proofs 

given here apply to more general values of q. Nevertheless, many ideas used here 

come from Zelevinsky's work. 
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Since the completion of this paper, some very important work of Lusztig, 

Kazhdan and Lusztig, and Ginsburg has appeared in pre-print form. This work, 
motivated by conjectures of Lusztig, gives a K-theoretic approach to the 
construction of irreducible modules over Hecke algebras for general groups. The 

reader is also referred to recent pre-prints of Howe, Waldspurger-Moeglin, and 

Waldspurger, which deal with generalized Hecke algebras associated to super- 

cuspidal representations. 
Throughout this paper, F denotes a p-adic field with ring of integers ~. Let rr 

be a fixed prime element in F and let G denote GL° (F). Let q = Card(O'/(-rr)). 

§1. The Hecke algebra for G 

The symmetric group S. will be denoted by W and the set of generating 

transpositions {s~ ..... s._,}, with s j - - ( j , j+  1), will be denoted by S. The pair 

(W, S) is a Coxeter group and its associated Hecke algebra is the C-algebra with 
generators {Tw : w E W} and relations: 

T~Tv = T~v if l(xy) = l ( x ) +  l(y), 

T 2 ~ = ( q - 1 ) T ~ j + q ,  j = l  . . . . .  n - 1  

where l: W---> Z + is the length function on W relative to S. This algebra will be 
denoted by ~fw. 

Let d =C[x~ ..... x , , x~  ~ ..... x:  ~] be the algebra of Laurent polynomials in 
x~, . . . , x , .  The group W acts on A( by permuting the variables: wxj = xw~j~. Let Y( 

be the algebra generated by Ydw and d subject to the relations: 

x~T~, = Ts,x~ i f [ / -  j[ > 1, 

xiT~, = T~x,+. - (q - 1)x,+l, 

x,+, T,, = T~,x, + (q - 1)x,+,. 

Every element of ~ has unique expressions of the form 

T :  ~ ,  a w T ~ =  E a "  
w ~ W  w ~ W  

for some a~, a"  E ag. 

By a theorem of Bernstein and Zelevinsky, X is isomorphic to the Hecke 

algebra of G with respect to an Iwahori subgroup. More precisely, let 

I = {(g0) E GL, (~7): g~i ~ rr¢7 if i > j} 
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be the standard Iwahori subgroup of G and let Cc(G/ / I )denote  the algebra of 

compactly supported functions f and G such that f (xgy)  = f (g)for  all g E G and 

x~y ~ / .  The product of two such functions f~ and ]'2 is given by convolution: 

f ,*f2(g) = fo f , (h)f2(h- 'g)dh 

where dh is the Haar measure on G such that meas ( I )=  1. 

THEOREM 1.1 (Bernstein-Zelevinsky). The algebra ~ is isomorphic to 

C(G//t). 

A similar description, also due to Bernstein and Zelevinsky, of Hecke algebras 

of more general group is also valid. Proofs can be found in [2]. 

Let ~ = Hom(~ ,C) .  A character X E c~ will be identified with a sequence 

X = [Xt . . . .  ,X,] of non-zero complex numbers defined by: X(xi) = Xl. The group 

W acts on ~ in the usual way: w~(x) = X(w- ' (x ) )  for w E W, X E ~, and x E ~.  

To each partition (n~ . . . . .  n,) of n we associate a subset T of S as follows: 

s~ E T if j ~  Y~-~ nk for all l = 1 . . . . .  t. Let Wr denote the (parabolic) subgroup of 

W generated by T and let YG denote the subalgebra of Y( generated by ~ / a n d  

{T~ : w E WT}. Then YG is clearly isomorphic to the Hecke algebra (with respect 

to an Iwahori subgroup) of GL , , (F )×  . . .  x GL. , (F) .  Denote the longest ele- 

ment in WT by w~. 

§2. ~ - M o d u l e s  

Let ~ denote the category of finite-dimensional ~-modules .  Throughout ,  all 

~ -modules  will be assumed finite-dimensional. 

For M E ~ and ~, E ~, set: 

M~ = {m E M : xm = ~b(x )m for all x E ~},  

M~e, = {m E M : ( x  - ~b(x))'m = 0 for all x E ~ ,  some t E Z+}, tO 

P ( M )  = {~0 a ~ : M , #  0}. 

Elements of P ( M )  will be called weights of M. We have: 

M = ~)  A,~se. 1Yl  ~/ . 

For each X E ~, we define an ~ -modu le  I(X ) explicitly as follows As a basis 

for I(X), we take elements ~w for w E W and let ~w act on I(X ) by the left 

regular representation: (/)w = Tw~, TwO, = T.Ty&,, for y, w E W. The action of 
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on I(X) is uniquely determined by the condition: xob, = X(X)4), for all x ~ M. 
By the relations between ~w and ~/given in §1, for all x E ~ and w E W there 

are unique elements ay .... E .ff such that 

= ' ( x ) +  . . . .  
y<w 

where < denotes the Bruhat order on W with respect to S. In l (x) ,  therefore 

xq)w = x(w-'(x))q,w + Y, x (a ,  .... )6y. 
y<w 

It will be convenient to identify the underlying space of l (x)  with ~w (via 

&w ~ Tw); this should not cause any confusion. 

For X E (g, let W~ = {w~ : w C W} denote the W-orbit of X- As noted in [4], 

P(I(x)) = W X and an irreducible Yg-module M is a quotient of I (x )  if and only 

if X ~ P(M). 

We now recall some notation and results from [4]. For w ~ W, let Cw and C" 

denote the Kazhdan-Lusztig elements of gw associated to w. These elements of 

the Hecke algebra are defined in [1]. For X = [2~ . . . . .  X,] ~ (~, set 

( ' t m~(x)=q,,~ x , - q  X,+, 
' \ X i - X i + l  I '  

A,,(X) = m~,(X)+ G, = m,,(s,x)+ C], 

(ms,(X) and As,(X) are defined only if X~X~+,). For w ~ W with reduced 

decomposition w = s~,.., s~k (s~, E S), set 

A. (X)  = A,,, (s;~.-'' s,kx)"" A .... .(s,~x)A~,. (X). 

Then Aw())  is an element of Ygw whose coetficients with respect to a basis 

depend rationally on 2, . . . . .  X, and it does not depend on the choice of reduced 

decomposition of w. Whenever Aw(X) is defined, A~(x )M ~ C_ M~, for all M @ M 

and, viewed as an element of l (x) ,  A , ( X ) E  I(X)~,. Furthermore,  A~(X) exists 

and is invertible whenever ms,j(s~j,,.., s~x)J 0,oo for j = 1 . . . . .  k. 

Following Zelevinsky ([5]), a sequence of the form A =  [q°- ' z ,q° -~z  . . . . .  z] 

with a ~ Z  and z E C *  is called a segment. Set IAl=a and let z~= 

[z, qz ..... q"-'z]. 
Let (n~,..., n,) be a partition of n and let T be the subset of S associated to the 

partition as in §1. Let ~={diz . . . .  ,z$,} be a collection of segments such that 

IAj] = nj and let X(~) = (A, . . . . .  ~,) and )~(~) = (/~, . . . . .  /~,) denote the elements 

of (¢ obtained by juxtaposing the &i and ~j, respectively. Let I(~b) denote the 
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9(w-submodule of I(,~(O)) generated over 9(w by C,,. Here we are regarding 

C~  as an element in the underlying space of I(~(~)) .  It is shown in §4 of [4] that 

I(qb) is stable under all of 9( and that C~., is an element of weight X(~). 

Furthermore,  

P(I(O))  = {wx(qb): w E W, l ( w w v ) =  l ( w ) +  I(wT)}. 

We call CwT the canonical generator of I(ep). The ~-module  l(dp) corresponds to 

a representation of G obtained by inducing from a parabolic subgroup of type 

(nl . . . . .  n,), a product of special representations of the Levi factor GL° , (F)×  

• .. × GL, , (F) .  It will be convenient to also use A~ × . . .  × A, to denote I (~) .  

Furthermore,  set: 
W ( T ) =  {w @ W : l ( w w v ) =  l(w )+ /(WT)}. 

§3. The classification theorems 

We state the theorems which give the classsification of irreducible 9(-modules 

in this section. This will require some preliminary definitions. 

DEFINmON 3.1. (i) For z E C*, let Lz denote the set of sequences of the form 

[Xl . . . . .  X,,] such that XJ = zq oj for some ai E Z ,  for j = 1 . . . . .  m, and any m. The 

set Lz will be called a line. 

(ii) Let A, and A2 be segments in the same line Lz, say 

A, = [qa+'-'z,.. . ,q~z], A2 = [qb+'~-'z . . . . .  qbz]. 

We will say that AiprecedesA2 if either a + l - l < b + m - 1  or i f a + l - l =  

b + m - 1 and a =< b. We will say that A, and A2 are linked if one of the following 

conditions is satisfied: 

a + l - l > - _ b + m > = a > b  or b + m - l > = a + l > = b > a .  

If At and A2 are linked and A1 precedes A2, set A~ D A2 = [qb+,,-, . . . . .  q~] and 

AI [.3 A2 = [q,~+t-I . . . . .  qbz], and if A1 and A2 are linked but A2 precedes A1, set 

Al O A2 = A2 1~ AI and A1 U A2 = A2 O A,. 

(iii) We put a partial order on L, as follows. Let X = [q"'z . . . .  ,q°'z], X '=  

[qb'z . . . . .  q~"z]ELz  and define X > X '  if l = m and the sequence (a~ . . . . .  at) is 

lexicographicaUy bigger than (bt . . . . .  b~), i.e., for some k, aj = bj for j < k and 

ak > bk. 

(iv) A character X E ~ will be called reduced if it is of the form ($~ . . . . .  $,) 

where the $j are sequences belonging to distinct lines. Call X = (~1 . . . . .  ~,) the 

decomposition of X into lines. 
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For X C % let #(X)  be the set of irreducible constituents of I(X). As shown in 

[4], for 3~(X~)=#(X2)if  X I , X 2 ~  and x, E W~2, while # ( X 1 ) M # ( X z ) = O  

otherwise. Since every irreducible ~ -modu le  is a constituent of #(X)  for some 

X E c8, it will suffice to describe the sets #(X) for X a representative of a given 

W-orbit in (~. 

Therefore,  we fix a character T 1 E (~ for the rest of the paper. We assume that 77 

is reduced with line decomposition ~ =(r/~ . . . . .  r/'). Suppose that 77 j is a 

sequence of length mj, so that (m~ .. . . .  m,) is a partition of n. Let T be the subset 

of S associated to this partition and set t~(-q) = {w, : w E WT}. We put a total 

order on ~(z/) as follows. If Xi = (Xl . . . . .  X3, for j = 1,2, are line decompositions 

of elements of (7(r/), then X~ > X2 if for some k, XI = X~ for i < k and X k > X~. 

If X @ % there is a unique sequence of segments A~ . . . . .  A, such that X = 

(A~ .. . . .  A,) and r is as small as possible. Call (A, . . . . .  A,) the decomposition of X 

into segments. 

DEFImTION 3.2. A character X ~ ( T / )  with segment decomposition 

(A~ . . . . .  A,) is called rain-reduced if A~ precedes A,÷, for all i such that A~ and Ai+ 1 

lie on the same line. Let M6(r / )  denote the set of min-reduced elements in 6(r/).  

The set Mt?(r/) inherits a total order from ~(r/). We also define a partial order 

on the set of collections of segments ~ = {A~ . . . . .  A,}. Let ~< be the partial order  

generated by the relations qb' ~< ~ where qb' is obtained from • by replacing two 

linked segments A~,Aj E qb by A~ tq A~ and A~ U Aj. 

The remaining sections of the paper will be devoted to proving the following 

theorems. 

THEOREM 3.3. Let X E M~(~l ) have segment decomposition X = (A~ . . . . .  A,) 

and let • = {A~ . . . .  , A,}. Then I(dP) has a unique irreducible quotient M and X < ~b 

for all ~b E P ( M )  f3 6(r / )  under the total order < on GO?). 

THEOREM 3.4. (1) Let M E # ( r / ) .  Then P(M)M G ( r / ) # O  and the unique 

minimal element XM E P ( M ) f 3  ~?(~l) (for the order < )  lies in M~?(Tl). 
(2) The map: 

is a bijection. 

THEOREM 3.5. 

position of X and set 

#(T1)---> M G ( n )  

M - ~  XM 

Let ) ,  ~b' E M~?(~). Let X = (A, . . . . .  A,) be the segment decom- 

~={A1,. . . ,Ar}.  Let M be the irreducible ~(-module 
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corresponding to ~b' by Theorem 3.4. Let ~b'= (A~ . . . . .  A;) be the segment decom- 

position of ~b', and set #P' = {A'I . . . .  , A'}. Then M is a constituent of I(#P) if and only 

§4. In this section we show that the proofs of Theorems 3.3, 3.4, and 3.5 can 

be reduced to the case that r/ lies in a line. 

Let ~ v¢ be the subalgebra of W-invariants in ~t. By a theorem of Bernstein 

(see [3] for a proof), d w is the center of W. The characters of ~ w correspond to 

W-orbits in d .  For [X] = {wx : w E W} a W-orbit in ~ and M E e//, set 

M[X] = {m E M : (a  - x(a))tm = 0 for all a E ~w,  some t E Z+}. 

It is clear that M[X] is ~-s table  and that 

M =  0 MIx]. 
xEqglW 

If T is a subset of S, then it follows that the center of ~T is the subalgebra ~ wT 

of WT-invariants in ~t. Hence for all X ~ ~/WT, the space 

MIx, T] = {m ~ M : ( a - x(a ))'m = 0 for all a U .d wT, some t U Z +} 

is ~T-stable and 
M =  ~ M [ x , T  ]. 

XE~ClWT 

Let M E A/ satisfy P(M) C W~. Set 

M,od= G Mge" 
XE~(n) 

By the results of the previous paragraph, M,~d is an ~T submodule of M, where T 

is the subset associated with the partition (ml . . . .  , m,) defined by ~ (see §3). This 

follows because ~(T/)= WT~. Thus we have a map o f  ~-modules :  

f:  ~M~ed--->M, 
~T 

T (~ m ---> Tm. 

PROPOSITION 4.1. The map f is an isomorphism. 

PROOF. The functor M--> Mred from ~-modules  to ~°r-modules is exact. The 

functor N-->~@~e,N from ~T-modules to ~-modules  is also exact and we 

have: 

d i m ( ~ @  N)  = (dim(N))[ W~ WT l, 
*eT 
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since X a @~eTN-~ ~w @~ewTN as vector spaces. It therefore suffices to prove the 

proposition for M irreducible. If M is irreducible, it will follow that f is an 

isomorphism if we prove that 

(*) dim(M) = dim(Mre~) J W~ Wr J. 

Let {wt,...,w~} be the set of representatives for W/WT such that for all 

j = l , . . . , l ,  l (w,z)<l(wj)  for all z E W r .  Then W ~ / = { w j $ : $ ~ 7 ( r / ) ,  j =  
• g e n  1 . . . . .  l}. To prove (*), it will suffice to show that dim(M~ e") = &m(Mw,,) for all 

j = 1,•.., I. This follows easily from the next lemma. 

LEMMA 4.2. Let M E J/l, X ~ % and suppose that Xj~ q~-IXJ÷~. Then 
• g e n  dim(M~ ~") = &m(M,,,, ). 

PROOF. Let ~2 be the subalgebra of ~ generated by T~j, x jl, and _~z -~ xj+~. The 
subspace M ~ " ~ M  se" is stable under ~2 and, as an ~2-module, all of its 

constituents are constituents of the Yg2-module I(X'), where X ' =  [X~,Xj+~]. If 

XJ ~ q-*~XJ÷~, then I(X') is irreducible ([4], Corollary 3.2) and the lemma follows. 

Proposition 4.1 shows that for the proofs of the theorems of §3, it is sufficient 
to look at the case where r/ lies in a line. 

§5. Analysis of the product of two segments 

We begin with a lemma concerning the case n = 3• 

LEMMA 5.1. Let n = 3 and let X = [1,1,q] E fig. Then ~(X) consists of two 
irreducible modules of dimension three• The weight [1, q, 1] occurs with multiplicity 
one in each of them• One of them contains X with multiplicity two and the other 
contains [q, 1,1] with multiplicity two. 

PROOF. Let qb = {[1], [q,1]}. Then I(qb) is a three-dimensional submodule of 

I(X), contains the weight [1,q, 1] with multiplicity one, and the weight [q,l,1] 

with multiplicity two. The iemma follows immediately if we show that I(X) 

contains no one-dimensional constituents. However, using the relations defining 

~, it is easy to show that (for any n), if ~':Y(--->C is a character, then the 

restriction of r to J is of the form (A) or (A) for A a segment of length n. 

For the rest of this section, let A~ = [qa+,-1 . . . . .  qa] and A2 = [qb+,.-~ . . . . .  qb] be 

segments of length l and m, respectively, such that l + m = n. Let T = {sj : j P  l} 

be the subset of S associated to the partition (/, m) of n. Let M = At x A2 and 

N = A2 x A~, and set g = (A~, A2), g '  = (A2, A~). 
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PROPOSITION 5.2. If A1 and A2 are not linked, then M is irreducible and is 

isomorphic to N. 

PROOF. By the results of §6 of [4], there is a non-zero map from M to N. 

Hence it will suffice to prove the irreducibility of M or N. 
We may assume that A1 C A2 or A2 C_ A~, for if this is not the case and if A1 and 

A2 are not linked, then the weight spaces of M are all one-dimensional (see 

proposition 4.5 of [4]) and the operators A~(X) are invertible for all w E W(T).  

The irreducibility of M then follows immediately. 

In §3 of [4], a character ~b was defined to be special if its stabilizer in W is of 

the form WT, for some subset T' C_ S. By theorem 3.1 of [4], if 4J is special, then 

dim R,  _-< 1 for any submodule R of I(~b') for any q~' E W~0. It is easy to see that 

P(M)  contains a unique special weight ~bo E W(T)x.  The irreducibility of M is 

thus a consequence of the following two facts: 

(a) If L is a non-zero submodule of M, then L~, ~ 0, and hence L~, = M~,. 

(b) M is generated by M,o. 
= [ q  . . . . .  q ] a n d A 2 =  , .... We first prove (b). Set -A1 o+~ 2 o [qb+~-i qm+l]. Since 

we are free to interchange A, and A2 (it suffices to prove the irreducibility of M 

or N), we may assume that either -AI _D A2, or AI = A2, or A, C_ A~. In the first two 

cases, let ~g,-i be the subalgebra of ~ generated by the T,, with j > 1 and 

x2 ~ . . . . .  x~ ~. Under the action of ~ ,  i, the canonical generator Cw~ of M 

generates an ~._l-module isomorphic to -AI × A2 and this subspace of M 

contains M~0. By induction on n, C~  E ~, - IM~.  The case A~ _D AI is similar. 

For the proof of (a), we use the following lemma. 

LEMMA 5.3. Let X E ~ and let M be a submodule of I (x ). Let w E W and 

assume that M~ contains an element of the form 

m = C~ + y~, ct,.Cr (at E C). 

Then for all s E S such that sw > w and sw x ~ X, M,~ ~ 0 and contains an element 

of the form: 

m' = Cw +y~wa',C (~, ~C). 

PROOF. If SWx~ W~, then A~(w~) is defined and it will suffice to show that 

A,(w~)m~O.  We have A,(wx) = m,(w~)+ C, and hence 

A,(w~)m = C,C, + ~ a,C, Cy + ms(wx)m. 
yZw 
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From the multiplication rules for C~Cw (see [1] or [4]), it follows that  A~(w~)m is 

of the form 

y 

if sw > w. 
For  the proof  of (a), we assume that A, _D A~; the case At C A2 is similar. 

To  prove (a), we use the following notat ion.  Write  A~ = [ q " + "  . . . . .  q" ]  and 

zX2 = [q~+'-~ . . . . .  qb]. A character  to = w~ for some w E W ( T )  will be wri t ten 

typically as 

tO = [q',,_q'-~,_q'~, . . . .  q ' . ] .  

Here  the location of the bars below the powers of q de te rmine  uniquely the 

e lement  w ~ W ( T )  such that tO = w~ because W ( T )  consists of pe r r .d ta t ions  

such that w -~ preserves the order  be tween the e lements  within one of the A t 

(note that in general ,  w~ = [Xw '~,) . . . . .  X~ '~,~] if X = [Xt . . . . .  X,]). 

Now let L be a non-zero  submodule  of M. We will say that  w~ occurs in L for 

w E W ( T )  if L,~ contains an e lement  of the form 

C~ + ~ ,~C~ (a~ ~ C). 

Our  strategy is to start with any w~ occurring in L and use L e m m a  5.3 and the 

opera tors  As(w~) to obtain L~,¢  0. So assume that w~ occurs in L. If X,, '(n = 

q*ww-,(j+,) with y < - 1, then As~(w~) is invertible and y~ occurs in L for some y 

such that  y~ = sjw~. Hence  we may assume that  X.. '(n = q~x~ 'tJ+,) with 3' => - 1 

for all j. We are concerned  only with those j such that 3' = - 1, for if none exist, 

= = ( q  , q ) ,  then then w~ too and we are done.  Set dj =X~-~(n. If (d, di+, ) '-~_~ 
ssw > w and L e m m a  5.3 implies that sjw occurs in L. So we may assume that 

those j with y = - 1  satisfy (di, dj+,) = (q '  ' , q ' ) .  Here  we use the fact that q '  

(resp. q~) cannot  precede  _qk (resp. qk)  if l < k because all w E W ( T )  preserve 

order  in the blocks A~,A2. 

Consider  the largest j such that - / =  - 1. For  this j we have (d,  dj+,, dj+2) = 

(q~-',q~,q'-') since A~_DA2. Note  that sj÷,w~ is not  a weight of M since no 

subsequence  of the form (q,- l ,q ,  ~,q,) occurs in any weight of M. The re fo r e  

L e m m a  5.1 implies that sjw~ is a weight of L ;  this is seen by considering the 

~3-submodule  genera ted  by L.j,.~, where  ~3 is the subalgebra of ~ genera ted  by 
+ ± I  +-1 T,j, Ts~+, and x;  ~, x j+,, x j+3. Now sjw~ is "c lose r"  to too than w~. Cont inuing in this 

way we obtain that  L~o ~ 0. 
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PROPOSITION 5.4. Assume that A, and A2 are linked. Then M and N are 

indecomposable. Up to multiples, there is a unique non-zero map c~ : M--~ N. 

(i) If  A1 precedes A2, then Ker(~b) is isomorphic to (A~ Cq A2)× (A1 U A2) and 

M/ker(~b) is an irreducible ~-module which we will denote by (A~,A2). 

(ii) If A2 precedes A1, then Ker(~b) is isomorphic to (A2,A,) and M/ker(~b) is 

isomorphic to (AI/-I A2) x (A, U A2). 

PROOF. Assume first that A~ precedes A2. There is a unique w E W ( T )  such 

that w x = (A~ f3 A2,A~ U A2). In particular, dim(Mw~) = 1. By Lemma 4.6 of [4], 

there is a unique element m E Mw~ of the form: 

m = C _ ~ +  Y. ~,~c,. 
,.%'<~%r) 

For j / / a ,  na21, m,,(s,w,)=O and hence As,(W~)=C~,. For j # l a ,  na21, 
I A, n A21 + I A2 I, s,w~ is not a weight of M and hence C's,m = 0. We will show 
below that C;,m = 0  for j =la,  nA21+lA2 I. Assuming this, we obtain, by 

proposition 4.5 of [4], a non-zero map from (A~ N A2)x (At U A2) to M which 
sends its canonical generator to m. Since (A~ tq A2) × (A~ U A2) is irreducible by 

Proposition 5.2, m generates a submodule of M which is isomorphic to 
(A, I"/A2) × (A, U Az). Let M'  be the quotient M / ~ m .  It can be checked that all 
weights of M'  occur with multiplicity one and that for all ~b E P(M')  and s E S 

such that s~b E P(M), A~(t~) is invertible. It follows that M' is irreducible. In 

addition, M is indecomposable because M is generated by an element of weight 

X (its canonical generator), but the submodule M" of M isomorphic to 
(Az N A2) x (A, U A2) contains no elements of weight X. By the results of §6 of [4] 

(specifically, proposition 6.4 of [4], whose proof does not rely on the results of 
this paper), there are non-zero maps ~b : M ~ N  and ,b':N--->M. Since N is 

generated by an element of weight X' = (A2,A~) and M~, C_ M", M and N are not 
isomorphic. Parts (i) and (ii) follow. Finally, N is indecomposable because N~. 

generates N by X' does not occur as a weight of the submodule of N isomorphic 
to M'. 

It remains to verify that, in the above notation C~,m = 0  for j = 

la, n A I+IA21. Note that s,w < w for this j. By iemma 6.6 of [4], 

Asi(W~)m = C;,m = ~ a;C~ 

for some a ' ~  C, where the sum is over z ~  %wwT, wwr such that z < wwr or 
sz < wwr and zw~l E W(T) .  For such z, zw~?x~ siw~ and hence A~(wx)m 

cannot have weight sjw~ (this is obvious, for example, from the proof of lemma 
4.6 of [4]). Therefore A,,(w~)m = C~jm = O. 
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§6. In this section, we complete the proofs of Theorems 3.3, 3.4 and 3.5. By 

the results of §4, we may assume that r/ lies on a line and there is no loss of 

generality in assuming that r / E  Lq. For r /on  a line, (7(~) = Wr/and  thus the first 

assertion of part (i) of Theorem 3.4 is clear. For M G 5~(*/), let XM be the unique 

minimal element of P(M).  

PROPOSITION 6.1. For M E 5(7t) and let XM have a segment decomposition 

XM = (At . . . . .  A,). Then M is a quotient of A~ x . . .  x A,. 

PROOF. Let I A, I = ni and let T be the subset of S associated to the partition 

(nt . . . . .  n,) of n. By definition of XM, stxME P ( M )  for all s t E T. Since m,j(stxu) = 
! I 0 for all st E T, As,(XM) = Cs~ and thus C,jM~M = 0 for all sj E T. The proposition 

follows from proposition 4.5 of [4]. 

PROPOSITION 6.2. Let M E 5('0). Then XM is rain-reduced. 

PROOF. Let XM have a segment decomposition XM = (A~ . . . . .  A,), so that M is 

a quotient of A~ x . . .  x A, by Proposition 6.1. If XM is not min-reduced, then At+l 

precedes A t for some j. If At and Ai+t are not linked, then At x At+ 1 is isomorphic 

to A~+~ × A t by Proposition 5.2. Hence M is also a quotient of A~ x . . .  × At+~ × 

A t × . . .  × A, and (A~ . . . .  ,At+t,A t . . . . .  A,) occurs as a weight of M. It is smaller than 

XM, contradicting the minimality of XM. If A t and At+~ are linked, then Proposition 

5.4 shows that M is also a quotient of At × .-.  × (At N At+~) × (At O At+l ) × " "  × 

A, and again, (A~ . . . . .  A t f3 Aj+~,A t td At+~ . . . .  ,A,) is smaller than XM and occurs as 

a weight of M. 

LEMMA 6.3. Let 

j = 0  . . . .  , m - 1 .  Let 

A = [q"  ~ . . . . .  1] be a segment and let At = [q' . . . . .  1] for 

M = A j  x A x  -. .  xA.  
J 

t-times 

Then M is irreducible. 

PROOF. Let ff = (Aj, A . . . . .  A). Then ~b is the unique min-reduced weight in 

P(M).  Thus, if N is a non-zero irreducible submodule of M, then Propositions 

6.1 and 6.2 imply that N is a quotient of M. The lemma will follow if we show 

that every non-zero element of M, generates M. Let ~b' be the unique special 

weight in P(M).  By theorem 3.1 of [4], dim M , . =  1. If we show that Ms, 

generates M, it will follow that N,, ~ 0, hence N,, = M,. and again N = M, since 

N is a quotient of M. Using these two ways of establishing the lemma, we show 

that it follows by induction on n = j + 1 + tm. So assume the lemma holds for 
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n - 1  and let Y(._~ be the subalgebra of Y( generated by T~ . . . . .  T,. and 

x~ ~ . . . . .  x~ ~. Let C be the canonical generator of M. 

If 0<_-j< m - 1 ,  then ~,_~C is an ~._~-submodule of M isomorphic to 

Aj_~ x A × . . .  × A (let Aj_, = Q if j = 0) and it contains M,. By induction, each 

non-zero element of M, generates Y(._~C under the action of ~,_~ and hence 

generates M under Y(. If j = m - 1, then Y(._~C contains an element of weight 

q/, hence ~,_~C contains M,,. Again by induction, Y(._,M,, = Y(._, C and so M,, 

generates M under ~. 

PROPOSITION 6.4. Let x E M 6 ( r l )  have a segment decomposition X = 

(A1 . . . . .  A,). Then A~ x . . .  × A, has a unique irreducible quotient M and XM = X. 

PROOF. This first statement will follow if we show that every non-zero 

element in the x-weight space of A1 x . . .  x A, generates A~ x . . .  x A,, for then 

Al x - - .  x A, has a unique maximal submodule (the submodule N which is 

maximal subject to the condition N x -- 0). Let I Aj I = nj and let T be the subset of 

S associated to the partition (m .. . . .  n,) of n. If z E W ( T )  and zx = X, then z can 

only act by changing equal segments Aj amongst themselves. Let ~ '  be the 

subalgebra of ~ generated by M and the Tsj for all j except those of the form 

j = Y-I=~ n~ for those l such that A ~  At+~. Then the x-weight space of A~ × . . .  x 

A, is contained in the ~ ' -submodule ~ 'C ,  where C is the canonical generator of 

A~ × . . .  x A,. The algebra ~ '  is isomorphic to ~,~, x . . .  x ~,~, for some partition 

(m~,. . . ,  m,) of n, where ~,,, is the Hecke algebra for GL,,,(F). The ~ ' -module  

~ ' C  is isomorphic to the tensor product of ~m,-modules of the form A × A x 

• .. × A. By Lemma 6.3, ~ ' C  is therefore an irreducible Yg'-module. This proves 

the first statement and the second follows because X is the minimal element of 
P(A, x . . .  x A,). 

Propositions 6.1, 6.2, and 6.4 complete the proofs of Theorems 3.3 and 3.4. It 

remains to prove Theorem 3.5. 

For any ~g-module M, define the formal character 

ch(M) = ~ (dim M~°")X 

as an element of the integral group ring Z[~],  as in [4]. From Theorem 3.4, it 

follows that the set of irreducible factors in a composition series for M is 

uniquely determined by ch(M); one uses the fact that an irreducible ~ -module  

N is uniquely determined by its minimal weight Xn and the partial order on the 

set of such weights. 

From now on, we use the notation of the statement of Theorem 3.5. According 



Vol. 54, 1 9 8 6  REPRESENTATIONS OF GL(n) 255 

to theorem 6.5 of [4] (whose proof is independent of Theorem 3.5), there is a 

filtration {i(~)k} of I (¢)  such that 

ch(I(q~) k) = ~ ch(I(O(i,j))). 
k > 0  i < j  

A i . A  i linked 

Here *( i , j )  denotes the collection of segments (in any order) obtained by 

replacing a linked pair of segments A~ and Aj in • by Ai fq A i and A~ U Aj. It 
follows that M is a constituent of I (~)  whenever qb'< qb by induction. 

The only if part of Theorem 3.5 follows from Proposition 6.2 and the following 

purely combinatorial assertion: if a rain-reduced character $ '  is a weight of I(qb), 

then qb'< ~ (in the notation of Theorem 3.5). 

Let $" be a character with segment decomposition $"= (A'( . . . . .  A'/). Suppose 

that A'[ = [qa+t-i . . . .  ,qO] and A'[+, = [qb+k-1 . . . . .  qb]. If a + 1 - 1 = b + k - 1, we 

will say that A'[ and A';+I have the same starting point. If the condition 

a + l -  1_-< b + k - 1 is satisfied for all i = 1 , . . . , t -  l, we will say that ~b" is 

semi-reduced. 

Now weaken the assumption on $ '  and suppose only that ~b' is semi-reduced. 

We will show that ~ '  ~< ~ if $ '  occurs as a weight of I(~).  Let X = [Xt . . . . .  X,] and 

$ ' =  [X~ .. . . . .  X~.]. Then qt' is obtained from X by permuting the XJ so that the 

order among entries of a segment Ak is preserved. First consider the case that 
A t = A'~. Then by induction on n, {A~ .. . . .  A',} <{A2 .. . . .  At} and hence ~ '  ~<~. 

Now let A1 = [X1 . . . . .  Xa] and •" be the character obtained from ~b' by moving 

the entries Xl . . . . .  Xa occurring among the X~k to the extreme left but preserving 

the order among the other entries. Thus qt"= Ix1 . . . .  ,X,,Xj .. . . . .  X~._. ] and $" is a 

also a semi-reduced weight of I(~).  Let $ " =  (A'; . . . . .  Ap) be the segment 

decomposition of $" and let ~"={A'(,...,A~}. Thus At ' =  A~. By the case 

considered in the previous paragraph, qb"<~ ~.  It will therefore suffice to show 

that d#'< ~". We have that ~b' is obtained from el' by a permutation which 
preserves the order among the entries of (A~ . . . . .  A~). It is easy to see that A'[ can 

be decomposed into smaller segments, A~' = (A ~ . . . . .  A k) so that ~b' is obtained 

from ~/," by inserting the A ~ consecutively among the A'~. Except possibly for N, if 
t t  i tt i ~ ~ t t .  (At, A ) occurs in $' ,  then (A,, A ) is itself a segment. It follows easily that ¢ '  < 
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